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Abstract— Sequential data prediction is essential in 

various fields such as finance, weather forecasting, and 

natural language processing. Recurrent Neural Networks 

(RNNs) are widely used to address these problems due to 

their ability to model dependencies over time. The core 

mechanism that enables this capability is the recurrence 

relation, which allows each hidden state in an RNN to 

depend on both the current input and the previous hidden 

state. This paper presents a conceptual analysis of the 

application of recurrence relations in RNNs for sequential 

data prediction. Instead of building new predictive models, 

this study focuses on examining how recurrence relations 

operate within existing RNN structures and how they 

influence the information flow and stability of predictions. 

The analysis also highlights the similarities between RNNs 

and classical statistical models, such as the Autoregressive 

Moving Average (ARMA) model, particularly in how both 

handle time-dependent data. The findings of this study show 

that the recurrence relation is the foundation of RNN 

performance, directly affecting its ability to process 

sequences, retain memory, and predict future values. 

Understanding the mathematical role of recurrence 

relations provides valuable insight into the strengths and 

limitations of RNNs in sequential modeling. 

 

Keywords—recurrence relations, Recurrent Neural 

Networks, sequential data prediction 

 

 

I.   INTRODUCTION 

Sequential data prediction is a fundamental task in various 

fields such as finance, natural language processing, signal 

processing, and weather forecasting. Many real-world 

phenomena evolve over time, forming patterns that can only be 

effectively modeled when past information is appropriately 

considered. Recurrent Neural Networks (RNNs) have emerged 

as one of the most prominent machine learning models capable 

of processing sequential data by capturing dependencies across 

time steps. 

The core principle that enables RNNs to handle sequential 

data is the application of recurrence relations. Through these 

relations, each hidden state in the RNN is computed as a 

function of the current input and the hidden state from the 

previous time step. This recursive dependency forms the 

backbone of RNN architecture, allowing it to retain memory and 

learn temporal patterns. Unlike feedforward neural networks 

that process independent data points, RNNs are explicitly 

designed to handle ordered sequences by leveraging this internal 

recurrence mechanism. 

This paper aims to analyze the application of recurrence 

relations within the structure of RNNs for sequential data 

prediction. The focus of the study is not to develop new 

predictive models but rather to examine how the recurrence 

relation operates within existing RNN frameworks, how it 

governs the flow of information over time, and how it affects the 

stability and accuracy of predictions. 

By analyzing the mathematical foundations and behavioral 

patterns of recurrence relations in RNNs, this paper provides a 

deeper understanding of why RNNs are effective for certain 

types of sequence learning and prediction tasks, as well as the 

limitations that arise from their recursive structures. This 

analysis contributes to a conceptual appreciation of the strengths 

and challenges of RNNs in sequential modeling. 

 

II.  THEORETICAL FRAMEWORK 

A. Recurrence Relation 

A recurrence relation is a mathematical expression that 

defines each element in a sequence based on its preceding 

elements. It describes the dependency of a current term on one 

or more previous terms, forming a chain of relations across the 

sequence. This is a simple form of a recurrence function: 

 

f(n) = A f(n−1) + B f(n−2) 

 

This indicates that the current term f(n) is computed from its 

immediate predecessors f(n−1) and f(n−2). 

In time-dependent systems, recurrence relations are essential 

to capture the temporal dynamics of sequential processes. They 

provide a mathematical framework for understanding how the 

current state is influenced by historical information.  

 

B. Recurrent Neural Networks (RNN) 

RNN is a class of networks that process input with various 

information that has been obtained previously. The 
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determination of decisions or results given from a particular 

input will be influenced by the information system that already 

exists. This happens because the Recurrent neural network has 

an internal memory that can remember a collection of 

information.  

The way the recurrent neural network (RNN) works is not 

directly proportional to the feed-forward neural network, but 

rather passes through a loop that contains some of the previous 

information. Thus, the recurrent neural network not only 

considers the input at that time, but also considers other things 

that have been obtained previously.  

Unlike traditional feedforward neural networks, which 

assume independence between input data points, RNNs are 

capable of modeling dependencies across time by maintaining 

an internal state known as the hidden state. The hidden state in 

an RNN is updated at each time step based on a recurrence 

relation: 

ht = f(wxhxt + whhht-1 + b) 

  

ht: the hidden state at time step t 

xt: input at time step t 

wxh, whhht-1: weight matrices 

b: bias vector 

f: activation function, typically tanh or ReLU 

 

The recurrence in this equation lies in the dependency of the 

current hidden state on the previous hidden state ht-1, enabling 

the network to pass information through time. 

 

C. ARMA 

The Autoregressive Moving Average (ARMA) model is a 

classical method used in time series analysis to model and 

predict sequential data. It is built upon the idea that the current 

value of a data sequence is influenced by its own past values and 

by past prediction errors. 

The ARMA model consists of two main components, 

Autoregressive Component and Moving Average. 

Autoregressive (AR) Component assumes that the current 

observation is directly related to a certain number of previous 

observations. In simple terms, it suggests that what happens now 

is strongly dependent on what happened recently. 

Moving Average (MA) Component considers the effect of 

past errors or shocks on the current observation. It captures the 

random influences or deviations that affected previous 

predictions and incorporates them into the current calculation. 

The ARMA model is widely used for forecasting in fields 

such as economics, finance, and engineering. It is especially 

effective when the time series data shows consistent, predictable 

patterns over time. 

The ARMA model is one of the foundational tools in 

statistical forecasting because of its ability to describe sequential 

dependencies using relatively simple calculations. It is 

particularly useful when the sequence is stable or stationary, 

meaning its statistical properties, like mean and variance, remain 

constant over time. 

Although the ARMA model is based on linear relationships, 

it shares an important conceptual similarity with Recurrent 

Neural Networks (RNNs). Both models rely on the idea that the 

present depends on the past. 

The difference lies in complexity. ARMA uses fixed linear 

formulas to capture sequential patterns, while RNNs use more 

flexible and adaptive structures that can learn non-linear patterns 

from data. 

In this sense, RNNs can be seen as a more advanced, modern 

extension of the ARMA concept, where the sequential influence 

is maintained but with the added ability to model complex and 

dynamic patterns that are beyond the capability of classical 

linear models. 

This connection shows that understanding ARMA provides a 

helpful foundation for analyzing how RNNs process and predict 

sequential data. 

 

III.   ANALYSIS 

A. Application of Recurrence Relation in RNN 

The core of Recurrent Neural Network (RNN) is the 

recurrence relation that governs the computation of the hidden 

state across time steps. The RNN that we deal with is 

 

𝑦𝑡 = 𝑤1ℎ𝑡 + 𝑏𝑦, 
 

t: time  

𝑦𝑡: predicted value 

𝑤1: real value 

ℎ𝑡: hidden layer  

 

The hidden layer is computed by 

 

ℎ𝑡 = tanh(𝑤2𝑥𝑡 + 𝑤3ℎ𝑡−1 + 𝑏ℎ) 

𝑥𝑡: input data 

𝑤2, 𝑤3: real values 

ℎ𝑡−1: previous hidden layer 

 

In the context of machine learning, let LS be the learning 

dataset, and k>2 be the size of LS. If the first departure time of 

the learning data is 1, then it can be said that 𝐿𝑆 = {𝑥1,𝑥2,…,𝑥𝜅}. 

Assuming that the initial condition of the hidden layer is 0 

(ℎ0=0), we can calculate 𝑦𝑡 for each time t. Here, 𝑥𝑡 is the data at 

time t and 𝑦𝑡 is the predicted value, so we want to satisfy 𝑦𝑡 = 

𝑥𝑡+1. 

This formula explicitly represents a recurrence relation, 

where the current hidden state depends on both the current input 

and the hidden state from the previous time step. The recurrence 

ensures that the RNN retains information from past sequences, 

enabling it to model time-dependent patterns. 

This relation structurally mimics a mathematical sequence 

recurrence, where each element is a function of its predecessors. 

In this RNN model, the recurrence relation acts as a memory 

chain, passing the influence of previous time steps forward into 

future computations. 

 

B. Relationship Between RNN and ARMA Model 

The recurrence relation in RNNs shares structural similarities 

with the Autoregressive Moving Average (ARMA) models 

commonly used in time series analysis. In ARMA models, 

future values are predicted as linear combinations of past 

observations: 
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�̂�𝜅+1 = 𝐶0𝑥𝜅 + 𝐶1𝑥𝜅−1 + 𝐶2𝑥𝜅−2 + ⋯ + 𝐶𝑙𝑥0+𝐶*𝑒 
 

𝑥0, ⋯, 𝑥𝜅: given data 

 

However, the presence of a non-linear activation function 

such as tanh in RNNs introduces non-linearity, which 

distinguishes RNNs from traditional linear models. When the 

activation function is expanded using a Taylor series, the 

structure of the RNN can be viewed as an extension of the 

ARMA model with non-linear components and more flexible 

learning capabilities. 

This non-linearity enables RNNs to capture more complex 

patterns, but it also introduces sensitivity to parameter changes 

and potential instability in learning sequences with irregular 

fluctuations. 

 

C. Sensitivity to Initial Conditions 

An important property of the recurrence relation in RNNs is 

the tendency of the hidden state sequence to converge toward 

fixed points under specific parameter configurations. For 

example, when certain weight parameters result in a product less 

than one, the hidden state sequence often stabilizes at a unique 

solution regardless of initial conditions. 

Conversely, when the weight configuration exceeds a critical 

threshold, the hidden state sequence may have multiple fixed 

points. In this situation, the final outcome is influenced by the 

initial hidden state and input trajectory. The system can 

converge to different solutions depending on the starting point, 

which highlights the importance of initial conditions in RNN-

based prediction tasks. 

 

 
Figure 2.1 

Source: https://www.mdpi.com/2073-8994/12/4/615 

 

Figure 2.1 shows that if point (𝜃,b) is in the white region, 

there is one solution. If point (𝜃,b) lies in the red curve, there are 

two solutions. There are three solutions if point (𝜃,b) is in the 

blue region. 

 

 
Figure 2.2 Example of One-Solution Case 

Source: https://www.mdpi.com/2073-8994/12/4/615 

 

 
Figure 2.3 Example of Two Solutions Case 

Source: https://www.mdpi.com/2073-8994/12/4/615 

 

 
Figure 2.4 Example of Three Solutions Case 

Source: https://www.mdpi.com/2073-8994/12/4/615 

 

The fixed-point convergence behavior illustrates that the 

recurrence relation not only governs the short-term sequential 

computation but also controls the long-term stability and 

memory retention of the network. 

The recurrence structure in RNNs inherently carries 

sensitivity to initial hidden state values. In certain parameter 

settings, small variations in initial conditions can lead the 

network to converge to different prediction trajectories or fixed 

points. 

This sensitivity is particularly evident in cases where multiple 

solutions are possible. Such behavior emphasizes that the initial 

hidden state and the sequence of early inputs can significantly 
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influence the prediction path and the final output. 

Understanding this sensitivity is crucial when applying RNNs 

to real-world problems, as improper initialization or noisy 

starting data can steer the network toward unintended or 

suboptimal predictive outcomes. 

 

D. Sequential Pattern Learning Based on Recurrence 

Through analysis of recurrence behavior, it is observed that 

RNNs can effectively learn and predict sequential patterns such 

as: 

- Monotonic sequences 

 
Figure 2.5 

Source: https://www.mdpi.com/2073-8994/12/4/615  

 

- Periodic or oscillating sequences 

 
Figure 2.6 

Source: https://www.mdpi.com/2073-8994/12/4/615  

 

However, RNNs with simple recurrence structures tend to 

struggle when learning highly fluctuating or irregular 

sequences, particularly those with rapid or unpredictable 

variations. In such cases, the network may fail to fully capture 

the sequence dynamics and may instead converge prematurely 

to a stable but incorrect solution. 

This limitation is consistent with the known challenge in 

RNNs regarding vanishing gradients and memory loss over 

long sequences. The basic recurrence relation, while powerful, 

is not always sufficient to maintain complex sequential 

information, especially over extended time steps. 

 

E. Implications of Recurrence Relations in Sequential 

Prediction 

The application of recurrence relations within RNN 

architectures plays a critical role in enabling sequential 

prediction. The recurrence structure: 

- Establishes a direct link between past and present 

computations 

- Controls how information from previous time steps is 

retained and propagated 

- Influences the stability and convergence of prediction 

paths 

Understanding the mathematical behavior of these recurrence 

relations provides valuable insights into why RNNs perform 

well on certain tasks but may falter in others. The selection of 

weight parameters, activation functions, and initial conditions 

all contribute to the network's ability to model and predict time-

dependent data effectively. 

In practical terms, when the recurrence relation is 

appropriately configured, RNNs can serve as robust tools for 

sequence modeling. However, to overcome the limitations in 

learning more complex patterns, deeper architectures or 

advanced variants such as Long Short-Term Memory (LSTM) 

and Gated Recurrent Units (GRU) may be required to enhance 

the memory capacity and learning stability of the model.  

 

IV.   CONCLUSION 

The analysis of recurrence relations within Recurrent Neural 

Networks (RNNs) reveals that recurrence is a fundamental 

mathematical structure that enables the network to process and 

predict sequential data. The hidden state updates in RNNs, 

which depend on both current inputs and previous hidden states, 

form a recurrence chain that effectively captures temporal 

dependencies. 

This recurrence structure allows RNNs to retain information 

across time steps, making them suitable for learning sequential 

patterns such as trends, cycles, and dependencies in time-series 

data. The mathematical similarity between RNNs and classical 

autoregressive models, with the added benefit of non-linear 

transformations, highlights the flexibility of RNNs in modeling 

more complex sequence behaviors. 

Through detailed analysis, it is evident that the recurrence 

relation significantly influences the stability, convergence, and 

predictive capacity of the network. Specific parameter settings 

can lead the network to converge toward one or more fixed 

points, and the sensitivity to initial conditions may affect 

prediction paths. These characteristics emphasize the 

importance of carefully understanding and configuring the 

recurrence structure in sequential learning tasks. 

However, simple RNNs also have notable limitations, 

particularly when dealing with highly fluctuating or complex 

sequences. In such cases, the basic recurrence mechanism may 

not adequately capture the necessary patterns, and more 

advanced architectures such as Long Short-Term Memory 

(LSTM) and Gated Recurrent Units (GRU) may be required to 

enhance performance and stability. 

In conclusion, the recurrence relation is not only the defining 

feature of RNNs but also the key element that determines their 

effectiveness in sequential prediction tasks. A thorough 
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comprehension of this mathematical structure is essential for 

optimizing RNN-based models and improving their practical 

application in various fields. 
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